On the Semi-norm of Radial Basis Function Interpolants

نویسنده

  • Hans-Martin Gutmann
چکیده

Radial basis function interpolation has attracted a lot of interest in recent years. For popular choices, for example thin plate splines, this problem has a variational formulation, i.e. the interpolant minimizes a semi-norm on a certain space of radial functions. This gives rise to a function space, called the native space. Every function in this space has the property that the semi-norm of an arbitrary interpolant to this function is uniformly bounded. In applications it is of interest whether a suuciently smooth function belongs to the native space. In this paper we give suucient conditions on the diierentiability of a function with compact support, in the case of cubic, linear and thin plate splines. In the case of multi-quadrics and Gaussian functions, it is shown that the only compactly supported function that satisses these conditions is identically zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Radial Basis Function Interpolants

This paper compares radial basis function interpolants on diier-ent spaces. The spaces are generated by other radial basis functions, and comparison is done via an explicit representation of the norm of the error functional. The results pose some new questions for further research.

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Variational Theory for Interpolation on Spheres

In this paper we consider the problem of developing a variational theory for interpolation by radial basis functions on spheres. The interpolants have the property that they minimise the value of a certain semi-norm, which we construct explicitly. We then go on to investigate forms of the interpolant which are suitable for computation. Our main aim is to derive error bounds for interpolation fr...

متن کامل

Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

‎In this paper‎, ‎indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations‎. ‎Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin‎. ‎To solve the pr...

متن کامل

A scheme for interpolation by Hankel translates of a basis function

Golomb and Weinberger [1] described a variational approach to interpolation which reduced the problem to minimizing a norm in a reproducing kernel Hilbert space generated by means of a small number of data points. Later, Duchon [2] defined radial basis function interpolants as functions which minimize a suitable seminorm given by a weight in spaces of distributions closely related to Sobolev sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2001